Over the past two decades, considerable research effort has been focussed on the processes of emergency evacuation, survival and rescue in harsh maritime environments. While advancements have been made, the rescue phase has not received the same research attention as have evacuation and survival. This is due, at least in part, to the difficult nature of the environment and the need to undertake rescue research in potentially dangerous conditions in order to be meaningful.

Offshore service and supply vessels that perform rescue standby duties in the Eastern Canadian offshore sector are equipped with a variety of resources with which to perform rescue. For light to moderate sea conditions, techniques currently understood and practiced tend to include rescue of personnel using fast rescue craft (FRC) and then subsequently transferring them from the FRC to a safe haven (often a standby vessel). In higher sea states, however, rescuing evacuees can be more challenging, given that it is often unsafe to launch and recover FRCs in such conditions. For these cases, many standby vessels in Eastern Canada are equipped with a device called a Dacon Scoop.

The Dacon Scoop is a semi-rigid manoeuvrable rescue net which is deployed directly from the side of the standby vessel and operated by a standard deck crane. It is designed to rescue individuals directly from the water but other potential uses include using it to recover small vessels such as lifeboats, FRCs and inflatable liferafts.

This paper will outline results from field trials undertaken to assess the feasibility of using a Dacon Scoop to recover a loaded inflatable liferaft. While a liferaft provides occupants with some protection from the elements, there are still issues that make it less than desirable to remain inside for extended periods of survival if an effective means of system recovery were available (e.g. low puncture resistance in debris or ice, lack of self propulsion, heat loss in cold environments, CO2 build-up with hatches closed, stability and overturning in heavy seas). The paper will present the test methodology and results from the field programme involving two different standby vessels operating in the Newfoundland and Labrador offshore. The focus of this paper will be on the practical recommendations for using a Dacon Scoop in this manner and how they relate to procedures, equipment and human factors issues both in the liferaft and on the standby vessel.